

Na

Relevance of timedependent particle interactions in the physical aging of colloidal suspensions

F. Bonacci^a, J. Goyon^a, A. Lemaitre^a, E.M Furst^b, X. Chateau^a

^a Laboratoire Navier, ENPC, IFSTTAR, CNRS UMR 8205, Marne-La-Vallée, France.

^b Department of Chemical & Biomolecular Engineering, Allan P. Colburn Laboratory, University of Delaware.

Context

• Rheology of colloidal suspensions:

Colloids = thermal motion (Brownian) + Inter-particle interactions

Tuning particle interactions

DLVO potential

- Van der Waals (attraction)
- Electrostatic (repulsion)

Context

• Rheology of colloidal suspensions:

Aging in soft glassy materials (SGMs)

- Aging: evolution of the mechanical properties with resting time
- It affects the elastic moduli of colloidal suspensions

Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L., & Ovarlez, G. (2006). Aging and solid or liquid behavior in pastes, 975–994.

It is crucial to understand aging in view of technological applications

Aging, open questions

Structural evolution towards equilibrium:

- Relaxation of internal stress
- "Micro-collapse"
- Thermal motion (hopping)
- Sedimentation

Masschaele, K., Fransaer, J., Vermant, J.,(2010) The Society of Rheology, *1437*.

Gao, Y., Kim, J., & Helgeson, M. E. (2015) Soft Matter.

Connection between structure, dynamics, and age remains unclear.

> No systematic study for micron-sized particles at higher volume fractions.

A "model" system

Stöber silica particles

μm Mag = 12.68 K X EHT = 0.80 kV Signal A = SE2 EXEC EXEC

$\begin{bmatrix} -20 \\ -10 \\ -20 \\ -20 \\ -30 \\ -40 \\ -40 \\ -40 \\ -40 \\ -50 \\ -60 \\ -60 \\ -70 \\ 0 \\ 0 \\ 0 \\ -70 \\ 0 \\ 0 \\ -70 \\ 0 \\ 0 \\ -70 \\ 0 \\ 0 \\ -70 \\ 0 \\ 0 \\ -70 \\ 0 \\ -70 \\ 0 \\ -70 \\ 0 \\ -70 \\ 0 \\ -70 \\ 0 \\ -70$

Ionic Strength (M)

Dense aqueous suspensions with divalent salt

Parameters:

- \circ Size d = 0,7-2 μ m
- Volume fraction $\phi = 0.3 0.4$
- Aging time t = 0 20 minutes
- Ionic strength [CaCl₂] = 0,10-0,20 M

Rapid flocculation: no electrostatic barrier

Mechanical aging

The system is rejuvenated by preshearing at 200 s⁻¹ $\gamma = 0,01\%$ Initial reproducible state f = 1 Hz500 600 = 0.15 M 500 400 2a = 0.7 µm $\phi = 0.300$ 400 (KPa) (KPa) 0 500 Increasing $\phi = 0.330$ (k Pa) 300 $\phi = 0.346$ concentration $\phi = 0.380$ ō 200 100 100 0 0 10⁰ **10**² 10³ 10¹ 10 Time (s)

Couette geometry

Dynamics

Confocal Microscopy

 $\phi = 0.39$ I = 0.15 M d = 1,6 µm 60/40% wt water/glycerol

Sample reconstruction based on computed particle centers and radii (centroid algorithm)

Optical traps (OT)

Manipulation of multiple particles with Laser Tweezers

Time –shared optical trap

Micro-mechanics with OT

Manipulation of multiple particles with Laser Tweezers

Time –shared optical trap

We formed linear aggregates composed by 11 and 13 particles

TIME

Three-point bending tests

Rolling friction between particles

Particles form irreversible roll resisting contacts, not accounted by DLVO theory

$$k_0 = \frac{(3\pi)^{7/3} E}{4a^{1/3}} \left(\frac{W}{E^*}\right)^{4/3}$$

E = Silica Young's modulus

Contact aging

Contact and mechanical aging

Contact and mechanical aging

A simple model

Conclusions

- Contact aging drives mechanical aging in dense colloidal suspensions where strong vdW forces are operative
- The formation of solid-solid contacts is a stabilizing factor (against sedimentation) for undensity-matched, micron-sized particles.
- Solid-solid contacts, although irreversible under thermal activation, are broken by mechanical forcing (shearing = rejuvenation).
- Same results for a PMMA suspensions in CaCl₂.

Thank you for the attention.

Navier

Contact aging

• Cold sintering of silica surfaces ?

J. N. Israelachvili, in Intermolecular and Surface Forces (Third Edition), edited by J. N. Israelachvili (Academic Press, San Diego, 2011) third edition ed. Hydration of the adsorbed cations ?

Vakarelski, I. U., Ishimura, K., & Higashitani, K. (2000). Adhesion between Silica Particle and Mica Surfaces in Water and Electrolyte Solutions, *118*, 111–118.

Formation of ion bridges?

